
© A M PA S ®

Specification

S-2014-006

Common LUT Format (CLF) – A Common File
Format for Look-Up Tables

The Academy of Motion Picture Arts and Sciences

Science and Technology Council

Academy Color Encoding System (ACES) Project Committee

January 17, 2020

Summary: This document specifies a human-readable text file format for the inter-
change of color transformations using an XML schema. The XML format supports
Look-Up Tables of several types: 1D LUTs, 3D LUTs, and 3×1D LUTs, as well
as additional transformation needs such as matrices, range rescaling, and ‘shaper
LUTs’. The document defines a processing model for color transformations where
each transformation is defined by a ‘Node’ that operates upon a stream of image
pixels. A node contains the data for a transformation, and a sequence of nodes can
be specified in which the output of one transform feeds into the input of another
node. The XML representation allows saving in a text file both a chain of multiple
nodes or a single node representing a unique transform. The format is extensible
and self-contained so the XML file may be used as an archival element.

S-2014-006 Common LUT Format (CLF)

NOTICES

©2020 Academy of Motion Picture Arts and Sciences (A.M.P.A.S.). All rights reserved. This document is
provided to individuals and organizations for their own internal use, and may be copied or reproduced in its
entirety for such use. This document may not be published, distributed, publicly displayed, or transmitted, in
whole or in part, without the express written permission of the Academy.

The accuracy, completeness, adequacy, availability or currency of this document is not warranted or guar-
anteed. Use of information in this document is at your own risk. The Academy expressly disclaims all
warranties, including the warranties of merchantability, fitness for a particular purpose and non-infringement.

Copies of this document may be obtained by contacting the Academy at councilinfo@oscars.org.

“Oscars,” “Academy Awards,” and the Oscar statuette are registered trademarks, and the Oscar statuette a
copyrighted property, of the Academy of Motion Picture Arts and Sciences.

This document is distributed to interested parties for review and comment. A.M.P.A.S. reserves the right to
change this document without notice, and readers are advised to check with the Council for the latest version
of this document.

The technology described in this document may be the subject of intellectual property rights (including
patent, copyright, trademark or similar such rights) of A.M.P.A.S. or others. A.M.P.A.S. declares that it
will not enforce any applicable intellectual property rights owned or controlled by it (other than A.M.P.A.S.
trademarks) against any person or entity using the intellectual property to comply with this document.

Attention is drawn to the possibility that some elements of the technology described in this document, or
certain applications of the technology may be the subject of intellectual property rights other than those
identified above. A.M.P.A.S. shall not be held responsible for identifying any or all such rights. Recipients
of this document are invited to submit notification to A.M.P.A.S. of any such intellectual property of which
they are aware.

These notices must be retained in any copies of any part of this document.

Page 2 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Table of Contents
NOTICES . 2

Introduction . 5

1 Scope . 6

2 References . 6

3 Specification . 7

3.1 General . 7

3.2 XML Structure . 8

3.2.1 General . 8

3.2.2 XML Version and Encoding . 8

3.2.3 Comments . 8

3.2.4 Language . 8

3.2.5 White Space . 9

3.2.6 Newline Control Characters . 9

4 XML Elements . 9

4.1 Array . 9

4.2 ProcessList . 11

4.3 ProcessNode . 12

4.4 Substitutes for ProcessNode . 13

4.4.1 General . 13

4.4.2 LUT1D . 13

4.4.3 LUT3D . 14

4.4.4 Matrix . 15

4.4.5 Range . 17

4.4.6 Log . 19

4.4.7 Exponent . 22

4.4.8 ASC CDL . 25

5 Implementation Notes . 27

5.1 Bit Depth . 27

5.1.1 Processing Precision . 27

5.1.2 Input To and Output From a ProcessList . 27

5.1.3 Input To and Output From a ProcessNode . 28

5.1.4 Conversion Between Integer and Normalized Float Scaling 28

5.2 Required vs Optional . 29

5.3 Efficient Processing . 29

Page 3 January 17, 2020

S-2014-006 Common LUT Format (CLF)

5.4 Extensions . 29

6 Examples . 29

Appendix A XML Schema . 31

Appendix B Interpolation . 36

B.1 Linear Interpolation . 36

B.2 Trilinear Interpolation . 36

B.3 Tetrahedral Interpolation . 38

Appendix C Cineon-style Log Parameters . 41

Appendix D Changes between v2.0 and v3.0 . 42

Page 4 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Introduction
Look-Up Tables (LUTs) are a common implementation for transformations from one set of color values to
another. With a large number of product developers providing software and hardware solutions for LUTs,
there is an explosion of unique vendor-specific LUT file formats, which are often only trivially different from
each other. This can create workflow problems when a LUT being used on a production is not supported by
one or more of the applications being used. Furthermore, many LUT formats are designed for a particular
use case only and lack the quality, flexibility, and metadata needed to meet modern requirements.

The Common LUT Format (CLF) can communicate an arbitrary chain of color operators (also called pro-
cessing nodes) which are sequentially processed to achieve an end result. The set of available operator types
includes matrices, 1D LUTs, 3D LUTs, ASC-CDL, log and exponential shaper functions, and more. Even
when 1D or 3D LUTs are not present, CLF can be used to encapsulate any supported color transforms as a
text file conforming to the XML schema.

Page 5 January 17, 2020

S-2014-006 Common LUT Format (CLF)

1 Scope
This document introduces a human-readable text file format for the interchange of color transformations
using an XML schema. The XML format supports Look-Up Tables of several types: 1D LUTs, 3D LUTs,
and 3×1D LUTs, as well as additional transformation needs such as matrices, range rescaling, and “shaper
LUTs.”

The document defines what is a valid CLF file. Though it is not intended as a tutorial for users to create
their own files, LUT creators will find it useful to understand the elements and attributes available for use in
a CLF file. The document is also not intended to provide guidance to implementors on how to optimize their
implementations, but does provide a few notes on the subject.

This document assumes the reader has knowledge of basic color transformation operators and XML.

2 References
The following standards, specifications, articles, presentations, and texts are referenced in this text:

IETF RFC 3066: IETF (Internet Engineering Task Force). RFC 3066: Tags for the Identification of Lan-
guages, ed. H. Alvestrand. 2001 IEEE DRAFT Standard P123

Academy S-2014-002, Academy Color Encoding System – Versioning System

Academy TB-2014-002, Academy Color Encoding System Version 1.0 User Experience Guidelines

ASC Color Decision List (ASC CDL) Transfer Functions and Interchange Syntax. ASC-CDL Release1.2.
Joshua Pines and David Reisner. 2009-05-04.

Page 6 January 17, 2020

S-2014-006 Common LUT Format (CLF)

3 Specification
3.1 General
A Common LUT Format (CLF) file shall be written using Extensible Markup Language (XML) and adhere
to a defined XML structure. A CLF file shall have the file extension ‘.clf’.

The top level element in a CLF file defines a ProcessList which represents a sequential set of color trans-
formations. The result of each individual color transformation feeds into the next transform in the list to
create a daisy chain of transforms.

An application reads a CLF file and initializes a transform engine to perform the operations in the list. The
transform engine reads as input a stream of code values of pixels, performs the calculations and/or interpola-
tions, and writes an output stream representing a new set of code values for the pixels.

In the sequence of transformations described by a ProcessList, each ProcessNode performs a trans-
form on a stream of pixel data, and only one input line (input pixel values) may enter a node and only one
output line (output pixel values) may exit a node. A ProcessList may be defined to work on either 1-
component or 3-component pixel data, however all transforms in the list must be appropriate, especially in
the 1-component case (black-and-white) where only 1D LUT operations are allowed. Implementation may
process 1-component transforms by applying the same processing to R, G, and B.

Figure 1 – Example of a Process List containing a sequence of multiple Process Nodes

The file format does not provide a mechanism to assign color transforms to either image sequences or image
regions. However, the XML structure defining the LUT transform, a ProcessList, may be encapsulated
in a larger XML structure potentially providing that mechanism. This mechanism is beyond the scope of this
document.

Each CLF file shall be completely self-contained requiring no external information or metadata. The full
content of a color transform must be included in each file and a color transform may not be incorporated

Page 7 January 17, 2020

S-2014-006 Common LUT Format (CLF)

by reference to another CLF file. This restriction ensures that each CLF file can be an independent archival
element.

Each ProcessList shall be given a unique ID for reference.

The data for LUTs shall be an ordered array that is either all floats or all integers. When three RGB color
components are present, it is assumed that these are red, green, and blue in that order. There is only one order
for how the data array elements are specified in a LUT, which is in general from black to white (from the
minimum input value position to the maximum input value position). Arbitrary ordering of list elements is
not supported in the format (see Section 4 for details).

NOTE: For 3D LUTs, the indexes to the cube are assumed to have regular spacing across the range of input
values. To accommodate irregular spacing, a "halfDomain" 1D LUT or Log node should be used as a
shaper function prior to the 3D LUT.

3.2 XML Structure
3.2.1 General

A CLF file shall contain a single occurrence of the XML root element known as the ProcessList. The
ProcessList element shall contain one or more elements known as ProcessNodes. The order and number
of process nodes is determined by the designer of the CLF file.

An example of the overall structure of a simple CLF file is thus:

<ProcessList id="123">
<Matrix id="1">

data & metadata
</Matrix>
<LUT1D id="2">

data & metadata
</LUT1D>
<Matrix id="3">

data & metadata
</Matrix>

</ProcessList>

3.2.2 XML Version and Encoding

A CLF file shall include a starting line that declares XML version number and character encoding. This line
is mandatory once in a file and looks like this:

<?xml version="1.0" encoding="UTF-8"?>

3.2.3 Comments

The file may also contain XML comments that may be used to describe the structure of the file or save
information that would not normally be exposed to a database or to a user. XML comments are enclosed in
brackets like so:

<!-- This is a comment -->

3.2.4 Language

It is often useful to identify the natural or formal language in which text strings of XML documents are
written. The special attribute named xml:lang may be inserted in XML documents to specify the language
used in the contents and attribute values of any element in an XML document. The values of the attribute are
language identifiers as defined by IETF RFC 3066. In addition, the empty string may be specified.

The language specified by xml:lang applies to the element where it is specified (including the values of
its attributes), and to all elements in its content unless overridden with another instance of xml:lang. In

Page 8 January 17, 2020

S-2014-006 Common LUT Format (CLF)

particular, the empty value of xml:lang can be used to override a specification of xml:lang on an enclosing
element, without specifying another language.

3.2.5 White Space

Particularly when creating CLF files containing certain elements (such as Array, LUT1D, or LUT3D) it is
desirable that single lines per entry are maintained so that file contents can be scanned more easily by a
human reader. There exist some difficulties with maintaining this behavior as XML has some non-specific
methods for handling white-space. Especially if files are re-written from an XML parser, white space will
not necessarily be maintained. To maintain line layout, XML style sheets may be used for reviewing and
checking the CLF file’s entries.

3.2.6 Newline Control Characters

Different end of line conventions, including <CR>, <LF>, and <CRLF>, are utilized between Mac, Unix,
and Windows systems. Different newline characters may result in the collapse of values into one long line of
text. To maintain intended linebreaks, CLF specifies that the ‘newline’ string, i.e. the byte(s) to be interpreted
as ending each line of text, shall be the single code value 1010 = 0A16 (ASCII ‘Line Feed’ character), also
indicated <LF>.

NOTE: Parsers of CLF files may choose to interpret Microsoft’s <CR><LF> or older-MacOS’ <CR>
newline conventions, but CLF files should only be generated with the <LF> encoding.

NOTE 2: <LF> is the newline convention native to all *nix operating systems (including Linux and modern
macOS).

4 XML Elements
4.1 Array
Description:

The Array element contains a table of entries with a single line for each grouping of values. This element
is used in the LUT1D, LUT3D, and Matrix ProcessNodes. The dim attribute specifies the dimensions of
the array and, depending on context, defines the size of a matrix or the length of a LUT table. The specific
formatting of the dim attribute must match with the type of node in which it is being used. The usages are
summarized below but specific requirements for each application of Array are described when it appears as
a child element for a particular ProcessNode.

Attributes:

dim (required)
Specifies the dimension of the LUT or the matrix and the number of color components. The dim

attribute provides the dimensionality of the indexes, where:

4 entries represent the dimensions of a 3D cube and the number of components per entry.

e.g. dim = 17 17 17 3 indicates a 17-cubed 3D LUT with 3 color components

2 entries represent the dimensions of a matrix.

e.g. dim = 3 3 indicates a 3×3 matrix

e.g. dim = 3 4 indicates a 3×4 matrix

2 entries represent the length of the LUT and the component value (1 or 3).

e.g. dim = 256 3 indicates a 256 element 1D LUT with 3 components (a 3×1D LUT)

e.g. dim = 256 1 indicates a 256 element 1D LUT with 1 component (1D LUT)

Page 9 January 17, 2020

S-2014-006 Common LUT Format (CLF)

ProcessList
Attributes:
 id
 compCLFversion
 name
 inverseOf

LUT3D
Attributes:

 inBitDepth
 outBitDepth
 interpolation
 id
 name

Description

OutputDescriptor

InputDescriptor

Info

Description

LUT1D
Attributes:

 inBitDepth
 outBitDepth
 halfDomain
 rawHalfs
 id
 name

Matrix
Attributes:

 inBitDepth
 outBitDepth
 id
 name

Description

Range
Attributes:

 inBitDepth
 outBitDepth
 style
 id
 name

ASC_CDL
Attributes:

 inBitDepth
 outBitDepth
 style
 id
 name

minInValue

maxInValue

minOutValue

maxOutValue

Description

SOPNode

plus all other
descriptive and
custom metadata

Slope

SaturationSatNode

Description

Offset

Power

CLF Object Model
of XML elements

(required values in red)

ACESuserName

ACEStransformID

Exponent
Attributes:

 inBitDepth
 outBitDepth
 style
 id
 name

Description

Array
Attributes:
 dim

Description

ExponentParams
Attributes:
 exponent
 offset
 channel

Array
Attributes:
 dim

Array
Attributes:
 dim

Log
Attributes:

 inBitDepth
 outBitDepth
 style
 id
 name

Description

LogParams
Attributes:
 base
 linSideSlope
 linSideOffset
 logSideSlope
 logSideOffset
 linSideBreak
 linearSlope
 channel

Copyright

Revision

AppRelease

Figure 2 – Object Model of XML Elements

Page 10 January 17, 2020

S-2014-006 Common LUT Format (CLF)

4.2 ProcessList
Description:

The ProcessList is the root element for any CLF file and is composed of one or more ProcessNodes. A
ProcessList is required even if only one ProcessNode will be present.

NOTE: The last node of the ProcessList is expected to be the final output of the LUT. A LUT designer
can allow floating-point values to be interpreted by applications and thus delay control of the final encoding
through user selections.

NOTE 2: If needed, a Range node can be placed at the end of a ProcessList to control minimum and
maximum output values and clamping.

Attributes:

id (required)
a string to serve as a unique identifier of the ProcessList

compCLFversion (required)
a string indicating the minimum compatible CLF specification version required to read this file //
The compCLFversion corresponding to this version of the specification is be "3.0".

name (optional)
a concise string used as a text name of the ProcessList for display or selection from an applica-
tion’s user interface

inverseOf (optional)
a string for linking to another ProcessList id (unique) which is the inverse of this one

Elements:

Description (required)
a string for comments describing the function, usage, or any notes about the ProcessList. A
ProcessList may contain one or more Descriptions.

InputDescriptor (optional)
an arbitrary string used to describe the intended source code values of the ProcessList.

OutputDescriptor (optional)
an arbitrary string used to describe the intended output target of the ProcessList (e.g. target
display)

ProcessNode (required)
a generic XML element that in practice is substituted with a particular color operator. The ProcessList
must contain at least one ProcessNode. The ProcessNode is described in Section 4.3.

Info (optional)
optional element for including additional custom metadata not needed to interpret the transforms.
Includes:

AppRelease (optional)
a string used for indicating application software release level

Copyright (optional)
a string containing a copyright notice for authorship of the CLF file

Revision (optional)
a string used to track the version of the LUT itself (e.g. an increased resolution from a
previous version of the LUT)

Page 11 January 17, 2020

S-2014-006 Common LUT Format (CLF)

ACEStransformID (optional)
a string containing an ACES transform identifier as described in Academy S-2014-002.
If the transform described by the ProcessList is the concatenation of several ACES
transforms, this element may contain several ACES Transform IDs, separated by white
space or line separators. This element is mandatory for ACES transforms and may be
referenced from ACES Metadata Files.

ACESuserName (optional)
a string containing the user-friendly name recommended for use in product user interfaces
as described in Academy TB-2014-002.

CalibrationInfo (optional)
container element for calibration metadata used when making a LUT for a specific device.
CalibrationInfo can contain the following child elements:

DisplayDeviceSerialNum

DisplayDeviceHostName

OperatorName

CalibrationDateTime

MeasurementProbe

CalibrationSoftwareName

CalibrationSoftwareVersion

4.3 ProcessNode
Description:

A ProcessNode element represents an operation to be applied to the image data. At least one ProcessNode
element must be included in a ProcessList. The generic ProcessNode element contains attributes and
elements that are common to and inherited by the specific sub-types of the ProcessNode element that can
substitute for ProcessNode. All ProcessNode substitutes shall inherit the following attributes.

Attributes:

id (optional)
a unique identifier for the ProcessNode

name (optional)
a concise string defining a name for the ProcessNode that can be used by an application for display
in a user interface

inBitDepth (required)
a string that is used by some ProcessNodes to indicate how array or parameter values have been
scaled

outBitDepth (required)
a string that is used by some ProcessNodes to indicate how array or parameter values have been
scaled The supported values for both inBitDepth and outBitDepth are the same:

- “8i”: 8-bit unsigned integer

- “10i”: 10-bit unsigned integer

- “12i”: 12-bit unsigned integer

- “16i”: 16-bit unsigned integer

- “16f”: 16-bit floating point (half-float)

Page 12 January 17, 2020

S-2014-006 Common LUT Format (CLF)

- “32f”: 32-bit floating point (single precision)

Elements:

Description (optional)
an arbitrary string for describing the function, usage, or notes about the ProcessNode. A ProcessNode

can contain one or more Descriptions.

4.4 Substitutes for ProcessNode
4.4.1 General

The attributes and elements defined for ProcessNode are inherited by the substitutes for ProcessNode.
This section defines the available substitutes for the generalized ProcessNode element.

The inBitDepth of a ProcessNode must match the outBitDepth of the preceding ProcessNode (if
any).

4.4.2 LUT1D

Description:

A 1D LUT transform uses an input pixel value, finds the two nearest index positions in the LUT, and then
interpolates the output value using the entries associated with those positions.

This node shall contain either a 1D LUT or a 3×1D LUT in the form of an Array. If the input to a LUT1D is
an RGB value, the same LUT shall be applied to all three color components.

A 3×1D LUT transform looks up each color component in a separate LUT1D of the same length. In a 3×1D
LUT, by convention, the LUT1D for the first component goes in the first column of Array.

The scaling of the array values is based on the outBitDepth (the inBitDepth is not considered).

The length of a 1D LUT should be limited to at most 65536 entries, and implementations are not required to
support LUT1Ds longer than 65536 entries.

Linear interpolation shall be used for LUT1D. More information about linear interpolation can be found in
Appendix B.

Elements:

Array (required)
an array of numeric values that are the output values of the 1D LUT. Array shall contain the table
entries of a LUT in order from minimum value to maximum value.

For a 1D LUT, one value per entry is used for all color channels. For a 3×1D LUT, each line should
contain 3 values, creating a table where each column defines a 1D LUT for each color component.
For RGB, the first column shall correspond to R’s 1D LUT, the second column shall correspond to
G’s 1D LUT, and the third column shall correspond to B’s 1D LUT.

Attributes:

dim (required)
two integers that represent the dimensions of the array. The first value defines the length
of the array and shall equal the number of entries (lines) in the LUT. The second value
indicates the number of components per entry and shall equal 1 for a 1D LUT or 3 for a
3×1D LUT.

e.g. dim = "1024 3" indicates a 1024 element 1D LUT with 3 component color (a
3×1D LUT)

e.g. dim = "256 1" indicates a 256 element 1D LUT with 1 component color (a 1D
LUT)

Page 13 January 17, 2020

S-2014-006 Common LUT Format (CLF)

NOTE: Array is formatted differently when it is contained in a LUT3D or Matrix element (see
4.1).

Attributes:

interpolation (optional)
a string indicating the preferred algorithm used to interpolate values in the 1DLUT. This attribute is
optional but, if present, shall be set to "linear".

NOTE 2: Previous versions of this specification allowed for implementations to utilize different
types of interpolation but did not define what those interpolation types were or how they should be
labeled. For simplicity and to ensure similarity across implementations, 1D LUT interpolation has
been limited to "linear" in this version of the specification. Support for additional interpolation
types could be added in future version.

halfDomain (optional)
If this attribute is present, its value must equal “true”. When true, the input domain to the node is
considered to be all possible 16-bit floating-point values, and there must be exactly 65536 entries in
the Array element.

NOTE 3: For example, the unsigned integer 15360 has the same bit-pattern (0011110000000000)
as the half-float value 1.0, so the 15360th entry (zero-indexed) in the Array element is the output
value corresponding to an input value of 1.0.

rawHalfs (optional)
If this attribute is present, its value must equal “true”. When true, the rawHalfs attribute indicates
that the output array values in the form of unsigned 16-bit integers are interpreted as the equivalent
bit pattern, half floating-point values.

NOTE 4: For example, to represent the value 1.0, one would use the integer 15360 in the Array

element because it has the same bit-pattern. This allows the specification of exact half-float values
without relying on conversion from decimal text strings.

Examples:

<LUT1D id="lut-23" name="4 Value Lut" inBitDepth="12i" outBitDepth="12i">
<Description> 1D LUT - Turn 4 grey levels into 4 inverted codes </Description>
<Array dim="4 1">

3
2
1
0

</Array>
</LUT1D>

Example 1 – Example of a very simple LUT1D

4.4.3 LUT3D

Description:

This node shall contain a 3D LUT in the form of an Array. In a LUT3D, the 3 color components of the input
value are used to find the nearest indexed values along each axis of the 3D cube. The 3-component output
value is calculated by interpolating within the volume defined by the nearest corresponding positions in the
LUT.

LUT3Ds have the same dimension on all axes (i.e. Array dimensions are of the form “n n n 3”). A LUT3D

with axial dimensions greater than 128x128x128 should be avoided.

The scaling of the array values is based on the outBitDepth (the inBitDepth is not considered).

Attributes:

Page 14 January 17, 2020

S-2014-006 Common LUT Format (CLF)

interpolation (optional)
a string indicating the preferred algorithm used to interpolate values in the 3DLUT. This attribute is
optional with a default of "trilinear" if the attribute is not present.

Supported values are:
- "trilinear": perform trilinear interpolation

- "tetrahedral": perform tetrahedral interpolation

NOTE: Interpolation methods are specified in Appendix B.

Elements:

Array (required)
an array of numeric values that are the output values of the 3D LUT. The Array shall contain
the table entries for the LUT3D from the minimum to the maximum input values, with the third
component index changing fastest.

Attributes:

dim (required)
four integers that reperesent the dimensions of the 3D LUT and the number of color com-
ponents. The first three values define the dimensions of the LUT and if multiplied shall
equal the number of entries actually present in the array. The fourth value indicates the
number of components per entry.
4 entries have the dimensions of a 3D cube plus the number of components per entry.

e.g. dim = "17 17 17 3" indicates a 17-cubed 3D lookup table with 3 component
color

NOTE 2: Array is formatted differently when it is contained in a LUT1D or Matrix element (see
4.1).

Examples:

<LUT3D id="lut-24" name="green look" interpolation="trilinear"
inBitDepth="12i" outBitDepth="16f">
<Description>3D LUT</Description>
<Array dim="2 2 2 3">

0.0 0.0 0.0
0.0 0.0 1.0
0.0 1.0 0.0
0.0 1.0 1.0
1.0 0.0 0.0
1.0 0.0 1.0
1.0 1.0 0.0
1.0 1.0 1.0

</Array>
</LUT3D>

Example 2 – Example of a simple LUT3D

4.4.4 Matrix

Description:

This node specifies a matrix transformation to be applied to the input values. The input and output of a
Matrix are always 3-component values.

All matrix calculations should be performed in floating point, and input bit depths of integer type should be
treated as scaled floats. If the input bit depth and output bit depth do not match, the coefficients in the matrix
must incorporate the results of the ‘scale’ factor that will convert the input bit depth to the output bit depth

Page 15 January 17, 2020

S-2014-006 Common LUT Format (CLF)

(e.g. input of 10i with an output of 12i requires the matrix coefficients already have a factor of 4095/1023
applied). Changing the input or output bit depth requires creation of a new set of coefficients for the matrix.

The output values are calculated using row-order convention (Equation 4.1), which is equivalent in function-
ality to the equations in 4.2.


a11 a12 a13

a21 a22 a23

a31 a32 a33



r1

g1

b1

 =


r2

g2

b2

 (4.1)

r2 = (r1 · a11) + (g1 · a12) + (b1 · a13)

g2 = (r1 · a21) + (g1 · a22) + (b1 · a23)

b2 = (r1 · a31) + (g1 · a32) + (b1 · a33)

(4.2)

Matrices using an offset calculation will have one more column than rows. An offset matrix may be defined
using a 3×4 Array (4.3), wherein the fourth column is used to specify offset terms, k1, k2, k3, that are added
to the result of the normal matrix calculations (4.4).


a11 a12 a13 k1

a21 a22 a23 k2

a31 a32 a33 k3



r1

g1

b1

1.0

 =


r2

g2

b2

 (4.3)

r2 = (r1 · a11) + (g1 · a12) + (b1 · a13) + k1

g2 = (r1 · a21) + (g1 · a22) + (b1 · a23) + k2

b2 = (r1 · a31) + (g1 · a32) + (b1 · a33) + k3

(4.4)

Elements:

Array (required)
a table that provides the coefficients of the transformation matrix. The matrix dimensions are either
3×3 or 3×4. The matrix is serialized row by row from top to bottom and from left to right, i.e.,
“a11 a12 a13 a21 a22 a23 . . .” for a 3×3 matrix.

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.5)

Attributes:

dim (required)
two integers that describe the dimensions of the matrix array. The first value define the
number of rows and the second is the number of columns.
2 entries have the dimensions of a matrix

e.g. dim = "3 3" indicates a 3×3 matrix

e.g. dim = "3 4" indicates a 3×4 matrix

NOTE: Previous versions of this specification used three integers for the dim attribute, rather than
the current two. In order to facilitate backwards compatibility, implementations should allow a third
value for the dim attribute and may simply ignore it.

Page 16 January 17, 2020

S-2014-006 Common LUT Format (CLF)

NOTE 2: Array is formatted differently when it is contained in a LUT1D or LUT3D element (see
4.1).

Examples:

<Matrix id="lut-28" name="AP0 to AP1" inBitDepth="16f" outBitDepth="16f" >
<Description>3x3 color space conversion from AP0 to AP1</Description>
<Array dim="3 3">

1.45143931614567 -0.236510746893740 -0.214928569251925
-0.0765537733960204 1.17622969983357 -0.0996759264375522
0.00831614842569772 -0.00603244979102103 0.997716301365324

</Array>
</Matrix>

Example 3 – Example of a Matrix node with dim="3 3 3"

<Matrix id="lut-25" name="colorspace conversion" inBitDepth="10i" outBitDepth="10i" >
<Description> 3x4 Matrix , 4th column is offset </Description>
<Array dim="3 4">

1.2 0.0 0.0 0.002
0.0 1.03 0.001 -0.005
0.004 -0.007 1.004 0.0

</Array>
</Matrix>

Example 4 – Example of a Matrix node

4.4.5 Range

Description:

This node maps the input domain to the output range by scaling and offsetting values. The Range element
can also be used to clamp values.

Unless otherwise specified, the node’s default behavior is to scale and offset with clamping. If clamping is
not desired, the style attribute can be set to "noClamp".

To achieve scale and/or offset of values, all of minInValue, minOutValue, maxInValue, and maxOutValue
must be present. In this explicit case, the formula for Range shall be as in Equation 4.6. The scaling
of minInValue and maxInValue depends on the input bit-depth, and the scaling of minOutValue and
maxOutValue depends on the output bit-depth.

out = in× scale + minOutValue− minInValue× scale (4.6)

If style="Clamp", the output value from Eq 4.6 is furthur modified via Eq. 4.7.

outclamped = MIN(maxOutValue,MAX(minOutValue, out)) (4.7)

Where:

scale =
(maxOutValue− minOutValue)

(maxInValue− minInValue)

MAX(a, b) returns a if a > b and b if b ≥ a

MIN(a, b) returns a if a < b and b if b ≤ a

The Range element can also be used to clamp values on only the top or bottom end. In such instances, no
offset is applied, and the formula simplifies because only one pair of min or max values are required. (The
style shall not be "noClamp" for this use-case.)

Page 17 January 17, 2020

S-2014-006 Common LUT Format (CLF)

If only the minimum value pair is provided, then the result shall be clamping at the low end, according to
Equation 4.8.

out = MAX(minOutValue, in× bitDepthScale) (4.8)

If only the maximum values pairs are provided, the result shall be clamping at the high end, according to
Equation 4.9.

out = MIN(maxOutValue, in× bitDepthScale) (4.9)

Where:

bitDepthScale =
SIZE(outBitDepth)

SIZE(inBitDepth)

and where:

SIZE(a) =

{
2bitDepth − 1 when a ∈ {"8i", "10i", "12i", "16i"}
1.0 when a ∈ {"16f", "32f"}

In both instances, values must be set such that maxOutValue = maxInValue× bitDepthScale.

NOTE: The bit depth scale factor intentionally uses 2bitDepth−1 and not 2bitDepth. This means that the scale
factor created for scaling between different bit depths is ”non-integer” and is slightly different depending on
the bit depths being scaled between. While intinct might be that this scale should be a clean bit-shift factor
(i.e. 2x or 4x scale), testing with a few example values plugged into the formula will show that the resulting
non-integer scale is the correct and intended behavior.

At least one pair of either minimum or maximum values, or all four values, must be provided.

Elements:

minInValue (optional)
The minimum input value. Required if minOutValue is present.

maxInValue (optional)
The maximum input value. Required if maxOutValue is present.
The maxInValue shall be greater than the minInValue.

minOutValue (optional)
The minimum output value. Required if minInValue is present.

maxOutValue (optional)
The maximum output value. Required if maxInValue is present.
The maxOutValue shall be greater than or equal to the minOutValue.

Attributes:

style (optional)
Describes the preferred handling of the scaling calculation of the Range node. If the style attribute
is not present, clamping is performed.

"noClamp"

If present, scale and offset is applied without clamping, as in Eq. 4.6.
(i.e. values below minOutValue or above maxOutValue are preserved)

"Clamp"

If present, clamping is applied according to Eq. 4.7 upon the result of the scale and offset
expressed in Eq. 4.6

Page 18 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Examples:

<Range inBitDepth="10i" outBitDepth="10i">
<Description>10-bit full range to SMPTE range</Description>
<minInValue>0</minInValue>
<maxInValue>1023</minInValue>
<minOutValue>64</minInValue>
<maxOutValue>940</minInValue>

</Range>

Example 5 – Using "Range" for scaling 10-bit full range to 10-bit SMPTE (legal) range.

4.4.6 Log

Description:

This node contains parameters for processing pixels through a logarithmic or anti-logarithmic function. A
couple of main formulations are supported. The most basic formula follows a pure logarithm or anti-logarithm
of either base 2 or base 10. Another supported formula allows for a logarithmic function with a gain factor
and offset. This formulation can be used to convert from linear to Cineon. Another style of log formula
follows a piece-wise function consisting of a logarithmic function with a gain factor, an offset, and a linear
segment. This style can be used to implement many common “camera-log” encodings.

NOTE: The equations for the Log node assume integer data is normalized to floating-point scaling.
LogParams do not change based on the input and output bit-depths.

NOTE 2: On occasion it may be necessary to transform a logarithmic function specified in terms of traditional
Cineon-style parameters to the parameters used by CLF. Guidance on how to do this is provided in Appendix
C.

Attributes:

style (required)
specifies the form of the of log function to be applied

Supported values for ”style” are:
- "log10"

- "antiLog10"

- "log2"

- "antiLog2"

- "linToLog"

- "logToLin"

- "cameraLinToLog"

- "cameraLogToLin"

The formula to be applied for each style is described by the equations below, for all of which:

FLT MIN = 1.175494e−38

MAX(a, b) returns a if a > b and b if b ≥ a

- "log10": applies a base 10 logarithm according to

y = log10(MAX(x,FLT MIN)) (4.10)

- "antiLog10": applies a base 10 anti-logarithm according to

x = 10y (4.11)

Page 19 January 17, 2020

S-2014-006 Common LUT Format (CLF)

- "log2": applies a base 2 logarithm according to

y = log2(MAX(x,FLT MIN)) (4.12)

- "antiLog2": applies a base 2 anti-logarithm according to

x = 2y (4.13)

- "linToLog": applies a logarithm according to

y = logSideSlope×logbase(MAX(linSideSlope×x+linSideOffset,FLT MIN))+logSideOffset
(4.14)

- "logToLin": applies an anti-logarithm according to

x =

(
base

y−logSideOffset
logSideSlope − linSideOffset

)
linSideSlope

(4.15)

- "cameraLinToLog": applies a piecewise function with logarithmic and linear segments on
linear values, converting them to non-linear values

y =

{
linearSlope× x + linearOffset if x ≤ linSideBreak

logSideSlope× logbase(MAX(linSideSlope× x + linSideOffset,FLT MIN)) + logSideOffset otherwise

(4.16)
where:

linearSlope is calculated using Eq. 4.19
linearOffset is calculated using Eq. 4.20

- "cameraLogToLin": applies a piecewise function with logarithmic and linear segments on
non-linear values, converting them to linear values

x =


(y − linearOffset)

linearSlope
if y ≤ logSideBreak(

base
y−logSideOffset

logSideSlope − linSideOffset
)

linSideSlope
otherwise

(4.17)

where:
logSideBreak is calculated using Eq. 4.18
linearSlope is calculated using Eq. 4.19
linearOffset is calculated using Eq. 4.20

Elements:

LogParams (required - if "style" is not a basic logarithm)
contains the attributes that control the "linToLog", "logToLin", "cameraLinToLog",
or "cameraLogToLin" functions

This element is required if style is of type "linToLog", "logToLin", "cameraLinToLog", or
"cameraLogToLin".

Attributes:

"base" (optional)
the base of the logarithmic function
Default is 2.

"logSideSlope" (optional)
“slope” (or gain) applied to the log side of the logarithmic segment.
Default is 1.

Page 20 January 17, 2020

S-2014-006 Common LUT Format (CLF)

"logSideOffset" (optional)
offset applied to the log side of the logarithmic segment.
Default is 0.

"linSideSlope" (optional)
slope of the linear side of the logarithmic segment.
Default is 1.

"linSideOffset" (optional)
offset applied to the linear side of the logarithmic segment.
Default is 0.

"linSideBreak" (optional)
the break-point, defined in linear space, at which the piece-wise function transitions be-
tween the logarithmic and linear segments.
This is required if style="cameraLinToLog" or "cameraLogToLin"

"linearSlope" (optional)
the slope of the linear segment of the piecewise function. This attribute does not need to be
provided unless the formula being implemented requires it. The default is to calculate using
linSideBreak such that the linear portion is continuous in value with the logarithmic
portion of the curve, by using the value of the logarithmic portion of the curve at the break-
point. This is described in the following note, using Equations 4.18-4.20.

"channel" (optional)
the color channel to which the exponential function is applied. Possible values are "R",
"G", "B". If this attribute is utilized to target different adjustments per channel, then up
to three LogParams elements may be used, provided that "channel" is set differently in
each. However, the same value of base must be used for all channels. If this attribute
is not otherwise specified, the logarithmic function is applied identically to all three color
channels.

NOTE 3: linearOffset is the offset of the linear segment of the piecewise function. This value is calculated
using the position of the break point and the linear slope in order to ensure continuity of the two segments.
Equations 4.18-4.20 describe the steps for calculating linearOffset.

First, the value of the break-point on the log-axis is calculated using the value of linSideBreak as input to
the logarithmic segment of Eq. 4.16, as shown in Eq. 4.18.

logSideBreak = logSideSlope× logbase(linSideSlope× linSideBreak + linSideOffset) + logSideOffset (4.18)

Then, if linearSlope was not provided, the value of linSideBreak is used again to solve for the derivative
of Eq. 4.14. The value of linearSlope is set to equal the the instantaneous slope at the break-point, or
derivative which is shown being solved for by Eq. 4.19:

linearSlope = logSideSlope×
(

linSideSlope
(linSideSlope× linSideBreak + linSideOffset)× ln(base)

)
(4.19)

Finally, the value of linearOffset can be solved for by rearranging the linear segment of Eq. 4.16 to get
Equation 4.20, and using the values of logSideBreak (obtained from Eq. 4.18) and linearSlope (obtained
from Eq. 4.19).

linearOffset = logSideBreak− linearSlope× linSideBreak (4.20)

Examples:

Page 21 January 17, 2020

S-2014-006 Common LUT Format (CLF)

<Log inBitDepth="16f" outBitDepth="16f" style="log10">
<Description>Base 10 Logarithm</Description>

</Log>

Example 6 – Example Log node applying a base 10 logarithm.

<Log inBitDepth="32f" outBitDepth="32f" style="cameraLinToLog">
<Description>Linear to DJI D-Log</Description>
<LogParams base="10" logSideSlope="0.256663" logSideOffset="0.584555"

linSideSlope="0.9892" linSideOffset="0.0108" linSideBreak="0.0078"
linearSlope="6.025"/>

</Log>

Example 7 – Example Log node applying the DJI D-Log formula.

4.4.7 Exponent

Description:

This node contains parameters for processing pixels through a power law function. Two main formulations
are supported. The first follows a pure power law. The second is a piecewise function that follows a power
function for larger values and has a linear segment that is followed for small and negative values. The latter
formulation can be used to represent the Rec. 709, sRGB, and CIE L* equations.

Attributes:

style (required)
specifies the form of the exponential function to be applied.
Supported values are:

- "basicFwd"

- "basicRev"

- "basicMirrorFwd"

- "basicMirrorRev"

- "basicPassThruFwd"

- "basicPassThruRev"

- "monCurveFwd"

- "monCurveRev"

- "monCurveMirrorFwd"

- "monCurveMirrorRev"

The formula to be applied for each style is included in Equations 4.21-4.28 for all of which:

g = exponent k = offset

MAX(a, b) returns a if a > b and b if b ≥ a

"basicFwd"

applies a power law using the exponent value specified in the ExponentParams element.
Values less than zero are clamped.

basicFwd(x) = [MAX(0, x)]g (4.21)

"basicRev"

applies power law using the exponent value specified in the ExponentParams element.

Page 22 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Values less than zero are clamped.

basicRev(y) = [MAX(0, y)]1/g (4.22)

"basicMirrorFwd"

applies a basic power law using the exponent value specified in the ExponentParams

element for values greater than or equal to zero and mirrors the function for values less
than zero (i.e. rotationally symmetric around the origin):

basicMirrorFwd(x) =


xg if x ≥ 0

−
[
(−x)g

]
otherwise

(4.23)

"basicMirrorRev"

applies a basic power law using the exponent value specified in the ExponentParams

element for values greater than or equal to zero and mirrors the function for values less
than zero (i.e. rotationally symmetric around the origin):

basicMirrorRev(y) =


y1/g if y ≥ 0

−
[
(−y)1/g

]
otherwise

(4.24)

"basicPassThruFwd"

applies a basic power law using the exponent value specified in the ExponentParams

element for values greater than or equal to zero and passes values less than zero unchanged:

basicPassThruFwd(x) =

{
xg if x ≥ 0

x otherwise
(4.25)

"basicPassThruRev"

applies a basic power law using the exponent value specified in the ExponentParams

element for values greater than or equal to zero and and passes values less than zero un-
changed:

basicPassThruRev(y) =

y1/g if y ≥ 0

y otherwise
(4.26)

"monCurveFwd"

applies a power law function with a linear segment near the origin

monCurveFwd(x) =


(

x + k
1 + k

)g
if x ≥ xBreak

x s otherwise
(4.27)

Where:

xBreak =
k

g − 1

And for Eq. 4.27 and Eq. 4.28:

s =

(
g − 1

k

)(
kg

(g − 1)(1 + k)

)g

"monCurveRev"

applies a power law function with a linear segment near the origin

monCurveRev(y) =


(1 + k) y(1/g) − k if y ≥ yBreak

y

s
otherwise

(4.28)

Page 23 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Where:

yBreak =

(
kg

(g − 1)(1 + k)

)g

"monCurveMirrorFwd"

applies a power law function with a linear segment near the origin and mirrors the function
for values less than zero (i.e. rotationally symmetric around the origin):

monCurveMirrorFwd(x) =

monCurveFwd(x) if x ≥ 0

−[monCurveFwd(−x)] otherwise
(4.29)

"monCurveMirrorRev"

applies a power law function with a linear segment near the origin and mirrors the function
for values less than zero (i.e. rotationally symmetric around the origin):

monCurveMirrorRev(y) =

monCurveRev(y) if y ≥ 0

−[monCurveRev(−y)] otherwise
(4.30)

NOTE: The above equations assume that the input and output bit-depths are floating-point. Integer values are
normalized to the range [0.0, 1.0].

Elements:

Description (optional)
See Section 4.3

ExponentParams (required)
contains one or more attributes that provide the values to be used by the enclosing Exponent ele-
ment.
If style is any of the “basic” types, then only exponent is required.
If style is any of the “monCurve” types, then exponent and offset are required.

Attributes:

"exponent" (required)
the power to which the value is to be raised
If style is any of the “monCurve” types, the valid range is [1.0, 10.0]. The nominal value
is 1.0.
NOTE 2: When using a “monCurve” style, a value of 1.0 assigned to exponent could
result in a divide-by-zero error. Implementors should protect against this case.

"offset" (optional)
the offset value to use
If offset is used, the enclosing Exponent element’s style attribute must be set to one of
the “monCurve” types. Offset is not allowed when style is any of the “basic” types.
The valid range is [0.0, 0.9]. The nominal value is 0.0.
NOTE 3: If zero is provided as a value for offset, the calculation of xBreak or yBreak
could result in a divide-by-zero error. Implementors should protect against this case.

"channel" (optional)
the color channel to which the exponential function is applied.
Possible values are "R", "G", "B".

Page 24 January 17, 2020

S-2014-006 Common LUT Format (CLF)

If this attribute is utilized to target different adjustments per channel, up to three
ExponentParams elements may be used, provided that "channel" is set differently in
each. If this attribute is not otherwise specified, the exponential function is applied identi-
cally to all three color channels.

Examples:

<Exponent inBitDepth="32f" outBitDepth="32f" style="basicFwd">
<Description>Basic 2.2 Gamma</Description>
<ExponentParams exponent="2.2"/>

</Exponent>

Example 8 – Using Exponent node for applying a 2.2 gamma.

<Exponent inBitDepth="32f" outBitDepth="32f" style="monCurveFwd">
<Description>EOTF (sRGB)</Description>
<ExponentParams exponent="2.4" offset="0.055" />

</Exponent>

Example 9 – Using Exponent node for applying the intended EOTF found in IEC 61966-2-1:1999
(sRGB).

<Exponent inBitDepth="32f" outBitDepth="32f" style="monCurveRev">
<Description>CIE L*</Description>
<ExponentParams exponent="3.0" offset="0.16" />

</Exponent>

Example 10 – Using Exponent node to apply CIE L* formula.

<Exponent inBitDepth="32f" outBitDepth="32f" style="monCurveRev">
<Description>Rec. 709 OETF</Description>
<ExponentParams exponent="1/0.45" offset="0.099" />

</Exponent>

Example 11 – Using Exponent node to apply Rec. 709 OETF.

4.4.8 ASC CDL

Description:

This node processes values according to the American Society of Cinematographers’ Color Decision List
(ASC CDL) equations. Color correction using ASC CDL is an industry-wide method of recording and
exchanging basic color correction adjustments via parameters that set particular color processing equations.

The ASC CDL equations are designed to work on an input domain of floating-point values of [0 to 1.0]
although values greater than 1.0 can be present. The output data may or may not be clamped depending on
the processing style used.

NOTE: Equations 4.31-4.34 assume that in and out are scaled to normalized floating-point range. If the
ASC CDL node has inBitDepth or outBitDepth that are integer types, then the input or output values must
be normalized to or from 0-1 scaling. In other words, the slope, offset, power, and saturation values stored in
the ProcessNode do not depend on inBitDepth and outBitDepth; they are always interpreted as if the
bit depths were float.

Attributes:

id (optional)
This should match the id attribute of the ColorCorrection element in the ASC CDL XML format.

style (optional)
Determines the formula applied by the operator. The valid options are:

Page 25 January 17, 2020

S-2014-006 Common LUT Format (CLF)

"Fwd"

implementation of v1.2 ASC CDL equation.
This is the default value for style.

"Rev"

inverse equation

"FwdNoClamp"

similar to the Fwd equation, but without clamping

"RevNoClamp"

inverse equation, without clamping

The first two implement the math provided in version 1.2 of the ASC CDL specification. The second
two omit the clamping step and are intended to provide compatibility with the many applications that
take that alternative approach.

Elements:

SOPNode (optional)
The SOPNode is optional, and if present, must contain each of the following sub-elements:

Slope

three decimal values representing the R, G, and B slope values, which is similar to gain,
but changes the slope of the transfer function without shifting the black level established
by offset

Valid values for slope must be greater than or equal to zero (≥ 0).
The nominal value is 1.0 for all channels.

Offset

three decimal values representing the R, G, and B offset values, which raise or lower overall
brightness of a color component by shifting the transfer function up or down while holding
the slope constant
The nominal value is 0.0 for all channels.

Power

three decimal values representing the R, G, and B power values, which change the inter-
mediate shape of the transfer function
Valid values for power must be greater than zero (> 0).
The nominal value is 1.0 for all channels.

SatNode (optional)
The SatNode is optional, but if present, must contain one of the following sub-element:

Saturation

a single decimal value applied to all color channels
Valid values for saturation must be greater than or equal to zero (≥ 0).
The nominal value is 1.0.

NOTE 2: If either element is not specified, values should default to the nominal values for each element. If
using the "noClamp" style, the result of defaulting to the nominal values is a no-op.

NOTE 3: The structure of this ProcessNode matches the structure of the XML format described in the
v1.2 ASC CDL specification. However, unlike the ASC CDL XML format, there are no alternate spellings
allowed for these elements.

The math for style="Fwd" is:

outSOP = CLAMP(in× slope + offset)power (4.31)

Page 26 January 17, 2020

S-2014-006 Common LUT Format (CLF)

luma = 0.2126× inR + 0.7152× inG + 0.0722× inB

out = CLAMP(luma + saturation× (outSOP − luma))
(4.32)

Where:
CLAMP() clamps the argument to [0,1]

The math for style="FwdNoClamp" is the same as for "Fwd" but the two clamp() functions are omitted.
Also, if (input× slope + offset) < 0, then no power function is applied.

The math for style="Rev" is:

inclamp = CLAMP(in)

luma = 0.2126× inclamp,R + 0.7152× inclamp,G + 0.0722× inclamp,B

outSAT = luma +
(inclamp − luma)

saturation

(4.33)

out = CLAMP

(
CLAMP(outSAT)

1
power − offset

slope

)
(4.34)

Where:
CLAMP() clamps the argument to [0,1]

The math for style="RevNoClamp" is the same as for "Rev" but the CLAMP() functions are omitted.
Also, if outSAT < 0, then no power function is applied.

Examples:

<ASC_CDL id="cc01234" inBitDepth="16f" outBitDepth="16f" style="Fwd">
<Description>scene 1 exterior look</Description>
<SOPNode>

<Slope>1.000000 1.000000 0.900000</Slope>
<Offset>-0.030000 -0.020000 0.000000</Offset>
<Power>1.2500000 1.000000 1.000000</Power>

</SOPNode>
<SatNode>

<Saturation>1.700000</Saturation>
</SatNode>

</ASC_CDL>

Example 12 – Example of an ASC CDL node

5 Implementation Notes
5.1 Bit Depth
5.1.1 Processing Precision

All processing shall be performed using 32-bit floating-point values. The values of the inBitDepth and
outBitDepth attributes shall not affect the quantization of color values.

NOTE: For some hardware devices, 32-bit float processing might not be possible. In such instances, process-
ing should be performed at the highest precision available. Because CLF permits complex series of discrete
operations, CLF LUT files are unlikely to run on hardware devices without some form of pre-processing.
Any pre-processing to prepare a CLF for more limited hardware applications should adhere to the processing
precision requirements.

5.1.2 Input To and Output From a ProcessList

Applications often support multiple pixel formats (e.g. 8i, 10i, 16f, 32f, etc.). Often the actual pixel format
to be processed may not agree with the inBitDepth of the first ProcessNode or the outBitDepth of

Page 27 January 17, 2020

S-2014-006 Common LUT Format (CLF)

the last ProcessNode. (Note that the ProcessList element itself does not contain global inBitDepth or
outBitDepth attributes.) Therefore, in some cases an application may need to rescale a given ProcessNode
to be appropriate for the actual image data being processed.

For example, if the last ProcessNode in a ProcessList is a LUT1D with an outBitDepth of 12i, it
indicates that the LUT Array values are scaled relative to 4095. If the application wants to produce floating-
point pixel values, it should therefore divide the LUT Array values by 4095 before processing the pixels
(according to 5.1.4). Likewise, if the outBitDepth was instead 32f and the application wants to produce
12i pixel values, it should multiply the LUT Array values by 4095. (Note that in this case, since the result of
the computations may exceed 4095 and the application wants to produce 12-bit integer output, the application
would want to clamp, round, and quantize the value.)

5.1.3 Input To and Output From a ProcessNode

In order to ensure the scaling of parameter values of all ProcessNodes in a ProcessList are consistent,
the inBitDepth of each ProcessNode must match the outBitDepth of the previous ProcessNode (if
any).

Please note that an integer inBitDepth or outBitDepth of a ProcessNode does not indicate that any
clamping or quantization should be done. These attributes are strictly used to indicate the scaling of parameter
and array values. As discussed in 5.1.1, processing precision shall be floating-point.

Furthermore, because the processing precision is intended to be floating-point, the inBitDepth and outBitDepth
only control the scaling of parameter and array values and do not impose range limits. For example, even if
the outBitDepth of a LUT Array is 12i, it does not mean that the Array values must be limited to [0,4095]
or that they must be integer values. It simply means that in order to rescale to 32f that a scale factor of 1/4095
should be used (as per 5.1.4).

Because processing within a ProcessList should be done at floating-point precision, applications may
optionally want to rescale the interfaces all ProcessNodes “interior” to a ProcessList to be 32f according
to 5.1.4. As discussed in 5.1.2, applications may want to rescale the “exterior” interfaces of the ProcessList
based on the type of pixel data being processed.

For some applications, it may be easiest to simply rescale all ProcessNodes to 32f input and output bit-depth
when parsing the file. That way, the ProcessList may be considered a purely 32f set of operations and the
implementation therefore does not need to track or deal with bit-depth differences at the ProcessNode level.

5.1.4 Conversion Between Integer and Normalized Float Scaling

As discussed above, the inBitDepth or outBitDepth of a ProcessNode may need to be rescaled in order
to accommodate the pixel data type being processed by the application.

The scale factor associated with the bit-depths 8i, 10i, 12i, and 16i is 2n − 1, where n is the bit-depth.

The scale factor associated with the bit-depths 16f and 32f is 1.0.

To rescale Matrix, LUT1D, or LUT3D Array values when the outBitDepth changes, the scale factor is
equal to newScale

oldScale . For example, to convert from 12i to 10i, multiply array values by 1023/4095.

To rescale Matrix Array values when the inBitDepth changes, the scale factor is equal to oldScale
newScale . For

example, to convert from 32f to 10i, multiply array values by 1/1023.

To rescale Range parameters when the inBitDepth changes, the scale factor for minInValue and
maxInValue is newScale

oldScale . To rescale Range parameters when the outBitDepth changes, the scale factor for
minOutValue and maxOutValue is newScale

oldScale .

Please note that in all cases, the conversion shall be only a scale factor. In none of the above cases, should
clamping or quantization be applied.

Aside from the specific cases listed above, changes to inBitDepth and outBitDepth do not affect the
parameter or array values of a given ProcessNode.

Page 28 January 17, 2020

S-2014-006 Common LUT Format (CLF)

If an application needs to convert between different integer pixel formats or between integer and float (or
vice versa) on the way into or out of a ProcessList, the same scale factors should be used. Note that when
converting from floating-point to integer at the application level that values should be clamped, rounded, and
quantized.

5.2 Required vs Optional
The required or optional indicated in parentheses throughout this specification indicate the requirement for
an element or attribute to be present for a valid CLF file. In the spirit of a LUT format to be used commonly
across different software and hardware, none of the elements or attributes should be considered optional for
implementors to support. All elements and attributes, if present, should be recognized and supported by an
implementation.

If, due to hardware or software limitations, a particular element or attribute is not able to be supported, a
warning should be issued to the user of a LUT that contains one of the offending elements. The focus shall
be on the user and maintaining utmost compatibility with the specification so that LUTs can be interchanged
seamlessly.

5.3 Efficient Processing
The transform engine may merge some ProcessNodes in order to obtain better performance. For example,
adjacent Matrix operators may be combined into a single matrix. However, in general, combining operators
in a way that preserves accuracy is difficult and should be avoided.

Hardware implementations may need to convert all ProcessNodes into some other form that is consistent
with what the hardware supports. For example, all ProcessNodes might need to be combined into a single
3D LUT. Using a grid size of 64 or larger is recommended to preserve as much accuracy as possible. Imple-
mentors should be aware that the success of such approximations varies greatly with the nature of the input
and output color spaces. For example, if the input color space is scene-linear in nature, it may be necessary
to use a “shaper LUT” or similar non-linearity before the 3D LUT in order to convert values into a more
perceptually uniform representation.

5.4 Extensions
It is recommended that implementors of CLF file readers protect against unrecognized elements or attributes
that are not defined in this specification. Unrecognized elements that are not children of the Info element
should either raise an error or at least provide a warning message to the user to indicate that there is an
operator present that is not recognized by the reader. Applications that need to add custom metadata should
place it under the Info element rather than at the top level of the ProcessList.

One or more Description elements in the ProcessList can and should be used for metadata that does
not fit into a provided field in the Info element and/or is unlikely to be recognized by other applications.

6 Examples
<?xml version="1.0" encoding="UTF-8"?>
<ProcessList id="ACEScsc.ACES_to_ACEScg.a1.0.3" name="ACES2065-1 to ACEScg"

compCLFversion="3.0">
<Info>

<ACEStransformID>ACEScsc.ACES_to_ACEScg.a1.0.3</ACEStransformID>
<ACESuserName>ACES2065-1 to ACEScg</ACESuserName>

</Info>
<Description>ACES2065-1 to ACEScg</Description>
<InputDescriptor>ACES2065-1</InputDescriptor>
<OutputDescriptor>ACEScg</OutputDescriptor>
<Matrix inBitDepth="16f" outBitDepth="16f">

<Array dim="3 3">
1.451439316146 -0.236510746894 -0.214928569252

-0.076553773396 1.176229699834 -0.099675926438

Page 29 January 17, 2020

S-2014-006 Common LUT Format (CLF)

0.008316148426 -0.006032449791 0.997716301365
</Array>

</Matrix>
</ProcessList>

Example 13 – ACES2065-1 to ACEScg

<?xml version="1.0" encoding="UTF-8"?>
<ProcessList id="ACEScsc.ACES_to_ACEScct.a1.0.3" name="ACES2065-1 to ACEScct"

compCLFversion="3.0">
<Description>ACES2065-1 to ACEScct Log working space</Description>
<InputDescriptor>Academy Color Encoding Specification (ACES2065-1)</InputDescriptor>
<OutputDescriptor>ACEScct Log working space</OutputDescriptor>
<Info>

<ACEStransformID>ACEScsc.ACES_to_ACEScct.a1.0.3</ACEStransformID>
<ACESuserName>ACES2065-1 to ACEScct</ACESuserName>

</Info>
<Matrix inBitDepth="16f" outBitDepth="16f">

<Array dim="3 3">
1.451439316146 -0.236510746894 -0.214928569252

-0.076553773396 1.176229699834 -0.099675926438
0.008316148426 -0.006032449791 0.997716301365

</Array>
</Matrix>
<Log inBitDepth="16f" outBitDepth="16f" style="cameraLinToLog">

<LogParams base="2" logSideSlope="0.05707762557" logSideOffset="0.5547945205"
linSideBreak="0.0078125" />

</Log>
</ProcessList>

Example 14 – ACES2065-1 to ACEScct

<?xml version="1.0" encoding="UTF-8"?>
<ProcessList id="5ac02dc7-1e02-4f87-af46-fa5a83d5232d" compCLFversion="3.0">

<Description>CIE-XYZ D65 to CIELAB L*, a*, b* (scaled by 1/100, neutrals at
0.0 chroma)</Description>

<InputDescriptor>CIE-XYZ, D65 white (scaled [0,1])</InputDescriptor>
<OutputDescriptor>CIELAB L*, a*, b* (scaled by 1/100, neutrals at 0.0

chroma)</OutputDescriptor>
<Matrix inBitDepth="16f" outBitDepth="16f">

<Array dim="3 3">
1.052126639 0.000000000 0.000000000
0.000000000 1.000000000 0.000000000
0.000000000 0.000000000 0.918224951

</Array>
</Matrix>
<Exponent inBitDepth="16f" outBitDepth="16f" style="monCurveRev">

<ExponentParams exponent="3.0" offset="0.16" />
</Exponent>
<Matrix inBitDepth="16f" outBitDepth="16f">

<Array dim="3 3">
0.00000000 1.00000000 0.00000000
4.31034483 -4.31034483 0.00000000
0.00000000 1.72413793 -1.72413793

</Array>
</Matrix>

</ProcessList>

Example 15 – CIE XYZ to CIELAB

Page 30 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Appendix A
(informative)

XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:AMPAS:CLF:v3.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:clf="urn:AMPAS:CLF:v3.0"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!-- Process List definition -->
<xs:element name="ProcessList" type="clf:ProcessListType"/>

<xs:complexType name="ProcessListType">
<xs:sequence>

<xs:element name="Description" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="InputDescriptor" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element name="OutputDescriptor" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element ref="clf:Info" minOccurs="0" maxOccurs="1"/>
<xs:element ref="clf:ProcessNode" minOccurs="1"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:anyURI" use="required"/>
<xs:attribute name="compCLFversion" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="inverseOf" type="xs:string" use="optional"/>

</xs:complexType>

<!-- Info element definition -->
<xs:element name="Info" type="clf:InfoType"/>

<xs:complexType name="InfoType">
<xs:sequence>

<xs:element name="AppRelease" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element name="Copyright" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element name="Revision" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element name="ACEStransformID" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element name="ACESuserName" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element ref="clf:CalibrationInfo" minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<!-- CalibrationInfo element definition -->
<xs:element name="CalibrationInfo" type="clf:CalibrationInfoType"/>

<xs:complexType name="CalibrationInfoType">
<xs:sequence>

<xs:element name="DisplayDeviceSerialNum" type="xs:string"
minOccurs="0" maxOccurs="1"/>

<xs:element name="DisplayDeviceHostName" type="xs:string"
minOccurs="0" maxOccurs="1"/>

<xs:element name="OperatorName" type="xs:string" minOccurs="0"
maxOccurs="1"/>

Page 31 January 17, 2020

S-2014-006 Common LUT Format (CLF)

<xs:element name="CalibrationDateTime" type="xs:string"
minOccurs="0" maxOccurs="1"/>

<xs:element name="MeasurementProbe" type="xs:string" minOccurs="0"
maxOccurs="1"/>

<xs:element name="CalibrationSoftwareName" type="xs:string"
minOccurs="0" maxOccurs="1"/>

<xs:element name="CalibrationSoftwareVersion" type="xs:string"
minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<!-- ProcessNode definition -->
<xs:element name="ProcessNode" type="clf:ProcessNodeType"/>

<xs:complexType name="ProcessNodeType" abstract="true">
<xs:sequence>

<xs:element name="Description" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="id" type="xs:anyURI" use="optional"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="inBitDepth" type="clf:bitDepthType" use="required"/>
<xs:attribute name="outBitDepth" type="clf:bitDepthType" use="required"/>

</xs:complexType>

<!-- ProcessNode: LUT1D definition -->
<xs:element name="LUT1D" type="clf:LUT1DType" substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="LUT1DType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

<xs:element name="Array" type="clf:ArrayType" minOccurs="1"
maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="interpolation" type="xs:string" use="optional"

fixed="linear"/>
<xs:attribute name="rawHalfs" type="xs:string" use="optional"/>
<xs:attribute name="halfDomain" type="xs:string"

use="optional"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<!-- ProcessNode: LUT3D definition -->
<xs:element name="LUT3D" type="clf:LUT3DType" substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="LUT3DType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

<xs:element name="Array" type="clf:ArrayType" minOccurs="1"
maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="interpolation" type="xs:string"

use="optional"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<!-- ProcessNode: Exponent definition -->
<xs:element name="Exponent" type="clf:ExponentType" substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="ExponentType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

Page 32 January 17, 2020

S-2014-006 Common LUT Format (CLF)

<xs:element name="ExponentParamsType" type="clf:ExponentParamsType"
minOccurs="1" maxOccurs="3"/>

</xs:sequence>
<xs:attribute name="style" type="xs:string" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="ExponentParamsType">
<xs:attribute name="exponent" type="xs:float" use="required" default="1.0"/>
<xs:attribute name="offset" type="xs:float" use="optional" default="0.0"/>
<xs:attribute name="channel" type="clf:channelType" use="optional"/>

</xs:complexType>

<!-- ProcessNode: Log definition -->
<xs:element name="Log" type="clf:LogType" substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="LogType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

<xs:element name="LogParamsType" type="clf:LogParamsType" minOccurs="1"
maxOccurs="3"/>

</xs:sequence>
<xs:attribute name="style" type="xs:string" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="LogParamsType">
<xs:attribute name="base" type="xs:float" use="optional" default="2"/>
<xs:attribute name="logSideSlope" type="xs:float" use="optional" default="1.0"/>
<xs:attribute name="logSideOffset" type="xs:float" use="optional" default="0.0"/>
<xs:attribute name="linSideSlope" type="xs:float" use="optional" default="1.0"/>
<xs:attribute name="linSideOffset" type="xs:float" use="optional" default="0.0"/>
<xs:attribute name="linSideBreak" type="xs:float" use="optional"/>
<xs:attribute name="linearSlope" type="xs:float" use="optional"/>
<xs:attribute name="channel" type="clf:channelType" use="optional"/>

</xs:complexType>

<!-- ProcessNode: ASC-CDL definition -->
<xs:element name="ASC_CDL" type="clf:ASC_CDLType" substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="ASC_CDLType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

<xs:element name="SOPNodeType" type="clf:SOPNodeType" minOccurs="0"
maxOccurs="1"/>

<xs:element name="SatNodeType" type="clf:SatNodeType" minOccurs="0"
maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="style" type="xs:string" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="SOPNodeType">
<xs:sequence>

<xs:element name="Slope" type="clf:floatListType" minOccurs="0" maxOccurs="1"
default="1.0 1.0 1.0"/>

<xs:element name="Offset" type="clf:floatListType" minOccurs="0" maxOccurs="1"
default="0.0 0.0 0.0"/>

<xs:element name="Power" type="clf:floatListType" minOccurs="0" maxOccurs="1"
default="1.0 1.0 1.0"/>

</xs:sequence>
</xs:complexType>

Page 33 January 17, 2020

S-2014-006 Common LUT Format (CLF)

<xs:complexType name="SatNodeType">
<xs:sequence>

<xs:element name="Saturation" type="xs:float" minOccurs="0" maxOccurs="1"
default="1.0"/>

</xs:sequence>
</xs:complexType>

<!-- ProcessNode: Range definition -->
<xs:element name="Range" type="clf:RangeType" substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="RangeType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

<xs:element name="minValueIn" type="xs:float" minOccurs="0"
maxOccurs="1"/>

<xs:element name="maxValueIn" type="xs:float" minOccurs="0"
maxOccurs="1"/>

<xs:element name="minValueOut" type="xs:float" minOccurs="0"
maxOccurs="1"/>

<xs:element name="maxValueOut" type="xs:float" minOccurs="0"
maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="style" type="xs:string" use="optional"

default="Clamp"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<!-- ProcessNode: Matrix definition -->
<xs:element name="Matrix" type="clf:MatrixType"

substitutionGroup="clf:ProcessNode"/>

<xs:complexType name="MatrixType">
<xs:complexContent>

<xs:extension base="clf:ProcessNodeType">
<xs:sequence>

<xs:element name="Array" type="clf:ArrayType" minOccurs="1"
maxOccurs="1"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="ArrayType">
<xs:simpleContent>

<xs:extension base="clf:floatListType">
<xs:attribute name="dim" type="clf:dimType" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="floatListType">
<xs:list itemType="xs:float"/>

</xs:simpleType>

<xs:simpleType name="dimType">
<xs:restriction base="clf:positiveIntegerListType">

<xs:minLength value="2"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="positiveIntegerListType">
<xs:list itemType="xs:positiveInteger"/>

</xs:simpleType>

Page 34 January 17, 2020

S-2014-006 Common LUT Format (CLF)

<xs:simpleType name="bitDepthType">
<xs:restriction base="xs:string">

<xs:pattern value="[0-9]+[fi]"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="channelType">
<xs:restriction base="xs:string">

<xs:pattern value="[RGB]"/>
</xs:restriction>

</xs:simpleType>

</xs:schema>

Page 35 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Appendix B
(normative)

Interpolation

When an input value falls between sampled positions in a LUT, the output value must be calculated as a
proportion of the distance along some function that connects the nearest surrounding values in the LUT.
There are many different types of interpolation possible, but only three types of interpolation are currently
specified for use with the Common LUT Format (CLF).

The first type – linear interpolation – is specified for use with a LUT1D node. The other two – trilinear and
tetrahedral interpolation – are specified for use with a LUT3D node.

B.1 Linear Interpolation
With a table of the sampled input values in inV alue[i] where i ranges from 0 to (n − 1), and a table of the
corresponding output values in outV alue[j] where j is equal to i,

index i inValue index j outValue

0 0 0 0
...

...
...

...

n− 1 1 n− 1 1000

the output resulting from input can be calculated after finding the nearest inV alue[i] < input.

When inV alue[i] = input, the result is evaluated directly.

output =
input− inV alue[i]

inV alue[i + 1]− inV alue[i]
× (outV alue[j + 1]− outV alue[j]) + outV alue[j]

B.2 Trilinear Interpolation
Trilinear interpolation implements linear interpolation in three-dimensions by successively interpolating each
direction.

Figure 3 – Illustration of a sampled point located within a basic 3D LUT mesh grid (left) and the same
point but with only the vertices surrounding the sampled point (right).

Page 36 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Figure 4 – Labeling the mesh points surrounding the sampled point (r, g, b).

NOTE: The convention used for notation is uppercase variables for mesh points and lowercase variables for
points on the grid.

Consider a sampled point as depicted in Figure 4. Let V (r, g, b) represent the value at the point with co-
ordinate (r, g, b). The distance between each node per color coordinate shows the proportion of each mesh
point’s color coordinate values that contribute to the sampled point.

∆r =
r −R0

R1 −R0
∆g =

g −G0

G1 −G0
∆b =

b−B0

B1 −B0
(B.1)

The general expression for trilinear interpolation can be expressed as:

V (r, g, b) = c0 + c1∆b + c2∆r + c3∆g + c4∆b∆r + c5∆r∆g + c6∆g∆b + c7∆r∆g∆b (B.2)

where:

c0 = V (R0, G0, B0)

c1 = V (R0, G0, B1)− V (R0, G0, B0)

c2 = V (10, G0, B0)− V (R0, G0, B0)

c3 = V (R0, G1, B0)− V (R0, G0, B0)

c4 = V (R1, G1, B1)− V (R1, G0, B0)− V (R0, G0, B1) + V (R0, G0, B0)

c5 = V (R1, G1, B0)− V (R0, G1, B0)− V (R1, G0, B0) + V (R0, G0, B0)

c6 = V (R0, G1, B1)− V (R1, G1, B0)− V (R0, G0, B1) + V (R0, G0, B0)

c7 = V (R1, G1, B1)− V (R1, G1, B0)− V (R0, G1, B1)− V (R1, G0, B1)

+ V (R0, G0, B1) + V (R0, G1, B0) + V (R1, G0, B0)− V (R0, G0, B0)

Expressed in matrix form:

C = [c0 c1 c2 c3 c4 c5 c6 c7]T (B.3)

∆ = [1 ∆b ∆r ∆g ∆b∆r ∆r∆g ∆g∆b ∆r∆g∆b]
T (B.4)

V (r, g, b) = CT∆ (B.5)

Page 37 January 17, 2020

S-2014-006 Common LUT Format (CLF)



c0

c1

c2

c3

c4

c5

c6

c7



=



1 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0

−1 0 1 0 0 0 0 0

−1 1 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0

1 −1 −1 1 0 0 0 0

1 −1 0 0 −1 1 0 0

−1 1 1 −1 1 −1 −1 1





V (R0, G0, B0)

V (R0, G1, B0)

V (R1, G0, B0)

V (R1, G1, B0)

V (R0, G0, B1)

V (R0, G1, B1)

V (R1, G0, B1)

V (R1, G1, B1)



(B.6)

The expression in Equation B.6 can be written as: C = AV.

Trilinear interpolation shall be done according to V (r, g, b) = CT∆ = VTAT∆.

NOTE 2: The term VTAT does not depend on the variable (r, g, b) and thus can be computed in advance
for optimization. Each sub-cube can have the values of the vector C already stored in memory. Therefore the
algorithm can be summarized as:

1. Find the sub-cube containing the point (r, g, b)

2. Select the vector C corresponding to that sub-cube

3. Compute ∆r, ∆g , ∆b

4. Return V (r, g, b) = CT∆

B.3 Tetrahedral Interpolation
Tetrahedral interpolation subdivides the cubelet defined by the vertices surrounding a sampled point into six
tetrahedra by segmenting along the main (and usually neutral) diagonal (Figure 5).

Figure 5 – Illustration of the six subdivided tetrahedra.

To find the tetrahedron containing the point (r, g, b):

Page 38 January 17, 2020

S-2014-006 Common LUT Format (CLF)

• if ∆b > ∆r > ∆g , then use the first tetrahedron, t1

• if ∆b > ∆g > ∆r, then use the first tetrahedron, t2

• if ∆g > ∆b > ∆r, then use the first tetrahedron, t3

• if ∆r > ∆b > ∆g , then use the first tetrahedron, t4

• if ∆r > ∆g > ∆b, then use the first tetrahedron, t5

• else, use the sixth tetrahedron, t6

The matrix notation is:

V =



V (R0, G0, B0)

V (R0, G1, B0)

V (R1, G0, B0)

V (R1, G1, B0)

V (R0, G0, B1)

V (R0, G1, B1)

V (R1, G0, B1)

V (R1, G1, B1)



(B.7)

∆t = [1 ∆b ∆r ∆g]T (B.8)

T1 =


1 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0

0 0 0 0 −1 0 1 0

0 0 0 0 0 0 −1 1

 T2 =


1 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 1

0 0 0 0 −1 1 0 0



T3 =


1 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0

0 0 0 0 0 −1 0 1

−1 1 0 0 0 0 0 0

 T4 =


1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0

−1 0 1 0 0 0 0 0

0 0 0 0 0 0 −1 1



T5 =


1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1

−1 0 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

 T6 =


1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1

0 −1 0 1 0 0 0 0

−1 1 0 0 0 0 0 0



(B.9)

Page 39 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Trilinear interpolation shall be done according to:

V (r, g, b)t1 = ∆T
t T1V (B.10)

V (r, g, b)t2 = ∆T
t T2V (B.11)

V (r, g, b)t3 = ∆T
t T3V (B.12)

V (r, g, b)t4 = ∆T
t T4V (B.13)

V (r, g, b)t5 = ∆T
t T5V (B.14)

V (r, g, b)t6 = ∆T
t T6V (B.15)

NOTE: The vectors TiV for i = 1, 2, 3, 4, 5, 6 does not depend on the variable (r, g, b) and thus can be
computed in advance for optimization.

Page 40 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Appendix C
(informative)

Cineon-style Log Parameters

When using a Log node, it might be desirable to conform an existing logarithmic function that uses Cineon
style parameters to the parameters used by CLF. A translation from Cineon-style parameters to those used by
CLF’s LogParams element is quite straightforward using the following steps.

Traditionally, refWhite and refBlack are provided as 10-bit quantities, and if they indeed are, first normalize
them to floating point by dividing by 1023.

refWhite =
refWhite10i

1023.0
(C.1)

refBlack =
refBlack10i

1023.0
(C.2)

Where:
subscript 10i indicates a 10-bit quantity

The density range is assumed to be:
range = 0.002× 1023.0 (C.3)

Then solve the following quantities:

multFactor =
range

gamma
(C.4)

gain =
highlight − shadow

1.0− 10(MIN(multFactor×(refBlack−refWhite),−0.0001)
(C.5)

offset =gain− (highlight − shadow) (C.6)
(C.7)

Where:
MIN(x, y) returns x if x < y, otherwise returns y

The parameters for the LogParams element are then:

base =10.0 (C.8)

logSlope =
1

multFactor
(C.9)

logOffset =refWhite (C.10)

linSlope =
1

gain
(C.11)

linOffset =
offset − shadow

gain
(C.12)

Page 41 January 17, 2020

S-2014-006 Common LUT Format (CLF)

Appendix D
(informative)

Changes between v2.0 and v3.0

• Add Log ProcessNode

• Add Exponent ProcessNode

• Revise formulas for defining use of Range ProcessNode to clamp at the low or high end.

• IndexMaps removed. Use a halfDomain LUT to achieve reshaping of input to a LUT.

• Move ACEStransform elements to Info element of ProcessList in main spec

• Changed syntax for dim attribute of Array when contained in a Matrix. Two integers are now used to
define the dimensions of the matrix instead of the previous three values which defined the dimensions of
the matrix and the number of color components.

• Update schema to correct errors and add new elements

Page 42 January 17, 2020

	Notices
	Introduction
	Scope
	References
	Specification
	General
	XML Structure

	XML Elements
	Array
	ProcessList
	ProcessNode
	Substitutes for ProcessNode

	Implementation Notes
	Bit Depth
	Required vs Optional
	Efficient Processing
	Extensions

	Examples
	Appendix XML Schema
	Appendix Interpolation
	Linear Interpolation
	Trilinear Interpolation
	Tetrahedral Interpolation

	Appendix Cineon-style Log Parameters
	Appendix Changes between v2.0 and v3.0

